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Abstract

We consider the problem of determining the stability boundary for an elastic rod under thrust and torsion. The

constitutive equations of the rod are such that both shear of the cross-section and compressibility of the rod axis are

considered. The stability boundary is determined from the bifurcation points of a single nonlinear second order dif-

ferential equation that is obtained by using the first integrals of the equilibrium equations. The type of bifurcation is

determined for parameter values. It is shown that the bifurcating branch is the branch with minimal energy. Finally, by

using the first integral, the solution for one specific dependent variable is expressed in terms of elliptic integrals. The

solution pertaining to the complete set of equilibrium equations is obtained by numerical integration. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The problem of determining the stability boundary of a twisted and axially compressed rod is indeed an
old one. Suppose that the rod is loaded by a compressive force of intensity P and a torsional couple of
intensity Mt. For the case of a rod described by Bernoulli–Euler rod theory, the critical value of the load
parameters ðPcr;MtcrÞ was determined by Greenhill in 1883 (see Timoshenko and Gere, 1961). Later the
problem was treated by many authors. We mention the works of Biezeno and Grammel (1953), Beck
(1955), Kovari (1969), Antman and Kenny (1981), Coleman et al. (1992), Atanackovic and Glavardanov
(1996), van der Heijden et al. (1998) and van der Heijden and Thompson (2000). Besides the value of critical
load parameters ðPcr;MtcrÞ another important result concerns the type of bifurcation at the critical point. It
is known that in the case of the Bernoulli–Euler model the rod loaded with a compressive force only ex-
hibits a super-critical bifurcation while the rod loaded by torque only exhibits a subcritical bifurcation. In
our previous work Atanackovic and Glavardanov (1996) we determined, analytically, the value of load
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parameters ðP �
cr;M

�
tcrÞ separating sub from the super critical bifurcation. Also in Atanackovic and Gla-

vardanov (1996) the values ðPcr;MtcrÞ are determined for a rod described by Haringx’s type of constitutive
equation.

Our intention in this work is to reconsider the problem of stability and bifurcation of a rod, described by
Haringx’s type of constitutive equation and loaded by a force and a couple. We shall use the Euler (static)
method of adjacent equilibrium configuration to analyze stability. First we shall reduce the system of
nonlinear equilibrium, geometrical and constitutive equations (altogether 18 equations) to a single non-
linear second order equation. We determine the critical load parameters as well as type of bifurcation from
the bifurcation points of this equation. This is a significant reduction, since in B�eeda et al. (1992) and
Atanackovic and Glavardanov (1996) the bifurcation analysis was performed on two second order non-
linear differential equations. Also the reduced system, when linearized, has a null space of dimension one.
Thus, we obtain single bifurcation equation for the reduced system. In earlier approaches (see B�eeda et al.,
1992; Atanackovic and Glavardanov, 1996) the null space of dimension two led to two bifurcation
equations, one of which was eliminated using symmetry considerations.

Another characteristic of our approach is that the second order equation that we deal with is the
Euler–Lagrange equation of an energy type functional and possesses a first integral. We shall use this
first integral to express the solution in terms of elliptic integrals. Thus, our results represent a generaliza-
tion of the results of Iljohin (1979) p. 38 for Bernoulli–Euler rod. On the other hand our results may
be viewed as a specialization of the results of Antman and Kenny (1981) to a specific constitutive equa-
tion. Due to this specialization we were able to obtain more information about the solution than presented
in Antman and Kenny (1981). Namely, we obtained a first integral and representation of the solution
in terms of elliptic integrals and we obtained the type of bifurcation for all values of load and material
parameters.

2. Formulation

Consider an elastic rod O1O2 shown in Fig. 1. The rod is naturally straight and loaded by a concentrated
compressive force and a couple at its end O2. The compressive force P ¼ �Pe10 is of constant intensity
P ¼ const: and oriented along the �xx10 axis of a fixed rectangular Cartesian coordinate system �xx10, �xx20 and �xx30
with unit vectors e10, e20 and e30, respectively. The couple is given as T ¼ Mte10 with Mt ¼ const: The end O1

of the rod is fixed to a unmovable rigid plate, lying in the �xx20 � �xx30 coordinate plane so that the cross-section
of the rod that is in contact with the rigid plate does not have any rotation or translation (welded end). For
interpretation of this boundary condition as well as for the review of other possibilities of specifying
boundary condition for shearable rods (see Antman and Christoforis, 1997). At the end O2 the rod is
welded to a movable rigid plate that can move freely but must remain parallel to the coordinate plane
�xx10 ¼ 0.

Let S be the arc-length of the rod axis in the undeformed state: S 2 ½0;L� where L is the length of the rod.
We specify the configuration of the rod by one vector function rðSÞ specifying the position of a point on the
rod axis and by orientation of the Cartesian coordinate system with axes �xx1, �xx2, �xx3 oriented along the normal
to the cross-section and along the principal directions of the rod cross-section at an arbitrary point O of the
rod axis, respectively. Thus we have

rðSÞ ¼ x10e10 þ x20e20 þ x30e30: ð1Þ

Let e1, e2, e3 be the unit vectors along the �xx1, �xx2, �xx3 respectively. The orientation of the system e1, e2, e3 with
respect to the unit vectors parallel with e10, e20, e30 and passing through point O is given by three Euler type
of angles. We use a set of the 1-3-2 Euler angles (also called ship angles, see Lurie, 1961) that transform e10,
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e20, e30 to e1, e2, e3 by the sequence of three rotations. The first is rotation of amount h1 about the �xx10 axis.
The next rotation is about n axis for an amount h3 (see Fig. 2). The last rotation is of amount h2 about the
�xx2 axis. All rotations are performed counterclockwise.

The vector x (the angular velocity vector) is

x ¼ h0
1e10 þ h0

3l þ h0
2e2; ð2Þ

Fig. 2. Euler type of angles defining local coordinate system.

Fig. 1. Coordinate system and load configuration.

T.M. Atanackovic, V.B. Glavardanov / International Journal of Solids and Structures 39 (2002) 2987–2999 2989



where ð�Þ0 ¼ d=dSð�Þ and l is the unit vector along the n axis. From (2) we obtain the components of x in
the local coordinate system e1; e2; e3. Thus, x ¼ x1e1 þ x2e2 þ x3e3 with

x1 ¼ h0
1 cos h2 cos h3 � h0

3 sin h2;

x2 ¼ h0
2 � h0

1 sin h3;

x3 ¼ h0
1 cos h3 sin h2 þ h0

3 cos h2:

ð3Þ

Let C be a vector defined by

C ¼ r0 � e1: ð4Þ

In the local coordinate system e1, e2, e3 the vector C may be expressed as

C ¼ C1e1 þ C2e2 þ C3e3: ð5Þ

Then the six quantities ðx1;x2;x3Þ and C1;C2;C2ð Þ are the strains for the rod theory that we use (see
Antman, 1995; Atanackovic, 1997).

The equilibrium equations for the rod can be written as

F0 ¼ 0; M0 ¼ �r0 � F; ð6Þ

where F ¼ F1e1 þ F2e2 þ F3e3 is the contact force, M ¼ M1e1 þ M2e2 þ M3e3 is the contact couple and we
assumed that there are no distributed forces or couples. Following Eliseyev (1988) we assume the con-
stitutive equations for the contact force and contact couple in the form

F ¼ B11C1e1 þ B22C2e2 þ B33C3e3

M ¼ A11x1e1 þ A22x2e2 þ A33x3e3;
ð7Þ

where B11;B22; . . . ;A33 are constants. Note that (4) may be written as

r0 ¼ C þ e1: ð8Þ

In the analysis that follows we assume that the rod has axial symmetry so that A22 ¼ A33 and B22 ¼ B33.
Introducing the dimensionless quantities

F 1 ¼
F1L2

A22

; F 2 ¼
F2L2

A22

; F 3 ¼
F3L2

A22

; k ¼ PL2

A22

;

M1 ¼
M1L
A22

; M2 ¼
M2L
A22

; M3 ¼
M3L
A22

; m ¼ MtL
A22

;

�xx10 ¼
x10
L

; �xx20 ¼
x20
L

; �xx30 ¼
x30
L

; t ¼ S
L
;

a ¼ A22

B11L2
; b ¼ A22

B22L2
; c ¼ a � b;

ð9Þ

and by using (7) in (3), (6) and (8) we obtain
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_FF 1 þ F 3M2 � F 2M3 ¼ 0;

_FF 2 þ F 1M3 �
A22

A11

F 3M1 ¼ 0;

_FF 3 þ
A22

A11

F 2M1 � F 1M2 ¼ 0;

_MM1 ¼ 0;

_MM2 þ 1

�
� A22

A11

�
M1M3 ¼ F 3 1

�
þ cF 1

�
;

_MM3 þ
A22

A11

�
� 1

�
M1M2 ¼ �F 2 1

�
þ cF 1

�
;

_hh1 ¼
c2
c3

A22

A11

M1 þ
s2
c3

M3;

_hh2 ¼
c2s3
c3

A22

A11

M1 þ M2 þ
s2s3
c3

M3;

_hh3 ¼ �s2
A22

A11

M1 þ c2M3;

_xx10 ¼ c2c3 1
�

þ aF 1

�
� bs3F 2 þ bc3s2F 3;

_�xx�xx20 ¼ c1c2s3ð þ s1s2Þ 1
�

þ aF 1

�
þ bc1c3F 2 þ b c1s2s3ð � c2s1ÞF 3;

_�xx�xx30 ¼ c2s1s3ð � c1s2Þ 1
�

þ aF 1

�
þ bs1c3F 2 þ b s1s2s3ð þ c1c2ÞF 3;

ð10Þ

where c1 ¼ cos h1, s1 ¼ sin h1; . . . ; s3 ¼ sin h3 and we assumed that c3 6¼ 0. The boundary conditions cor-
responding to (10) read

F 1ð1Þ ¼ �k; F 2ð1Þ ¼ 0; F 3ð1Þ ¼ 0;

M1ð1Þ ¼ m; h2ð1Þ ¼ 0; h3ð1Þ ¼ 0;

h1ð0Þ ¼ 0; h2ð0Þ ¼ 0; h3ð0Þ ¼ 0;

�xx10ð0Þ ¼ 0; �xx20ð0Þ ¼ 0; �xx30ð0Þ ¼ 0:

ð11Þ

Let F 1; F 2; F 3; . . . ;�xx30 be a solution to (10) and (11). Then an arbitrary rotation about the x10 axis leads to
another solution, i.e., F 1; F 2 cos d þ F 3 sin d;�F 2 sin d þ F 3 cos d; . . . ;��xx20 sin d þ �xx30 cos d is a solution to
(10) and (11) for arbitrary d. Note that (10, line 4) together with (11, line 4) lead to

M1 ¼ m: ð12Þ
For further analysis we shall need the first six equations of the system (10), that after the use of (12) become

_FF 1 þ F 3M2 � F 2M3 ¼ 0;

_FF 2 þ F 1M3 �
A22

A11

mF 3 ¼ 0;

_FF 3 þ
A22

A11

mF 2 � F 1M2 ¼ 0;

_MM2 þ 1

�
� A22

A11

�
mM3 ¼ F 3 1

�
þ cF 1

�
;

_MM3 þ
A22

A11

�
� 1

�
mM2 ¼ �F 2 1

�
þ cF 1

�
:

ð13Þ
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It can be seen that the system (13) has the following first integrals

F 1mþ F 2M2 þ F 3M3 ¼ �km;

F
2

1 þ F
2

2 þ F
2

3 ¼ k2:
ð14Þ

We proceed now to simplify (13). Thus, we introduce the variables

X2 ¼ M
2

2 þ M
2

3;

X3 ¼ F 2M2 þ F 3M3;

X4 ¼ F 2M3 � F 3M2:

ð15Þ

By differentiating (14, line 1) and by using (13) we find that

_FF 1 ¼ X4: ð16Þ
Further by differentiating (15) and by using (13) we obtain

_XX2 ¼ �2X4 1
�

þ cF 1

�
;

_XX3 ¼ �mX4;

_XX4 ¼ �X2F 1 þ mX3 þ F 1

� �2�
� k2

�
1
�

þ cF 1

�
:

ð17Þ

It can be seen that the system (16) and (17) has the following first integrals:

X 2
3 þ X 2

4 ¼ k2
�

� F 1

� �2�
X2;

X3 ¼ �m F 1

�
þ k
�
;

X2 þ 2F 1 þ c F 1

� �2 ¼ C ¼ const:

ð18Þ

From system (16)–(18) we derive the following second order equation

€FF 1 k2
�

� F 1

� �2�þ _FF 1

� �2
F 1 þ km2 k

�
þ F 1

�2 þ k2
�

� F 1

� �2�2
1
�

þ cF 1

�
¼ 0: ð19Þ

The boundary conditions corresponding to (19) follow from (11, line 1) and the condition of global
equilibrium of forces in the x10 direction. Thus, they read

F 1ð0Þ ¼ �k; F 1ð1Þ ¼ �k: ð20Þ
Following Antman and Kenny (1981), we introduce the angle h (the Euler angle of nutation) between e1
and e10. Then,

F 1 ¼ �k cos h: ð21Þ
With (21), Eq. (19) becomes

k3 sin3 h €hh

"
þ m2 sin h

1þ cos hð Þ2
þ k sin h 1ð � ck cos hÞ

#
¼ 0: ð22Þ

We are going to use (22) for the local bifurcation analysis. Thus, we are interested in solutions h tð Þ of (22)
that are C2(0,1) functions, small in L1 norm. Therefore, as shown by Antman and Kenny (1981), we assume
that hj j < p. Then, from (22) we obtain

€hh þ m2 sin h

1þ cos hð Þ2
þ k sin h 1ð � ck cos hÞ ¼ 0: ð23Þ
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The boundary conditions corresponding to (23) follow from (20) and (21) so that

hð0Þ ¼ 0; hð1Þ ¼ 0: ð24Þ
The system (23) and (24) will be the basis for our bifurcation analysis. Note that (23) and (24) are Euler–
Langrange equations of the variational principle that we formulate next. Consider the problem of deter-
mining the minimum of the functional

I ¼
Z 1

0

_HH2

2

 
� m2

1þ cosHð Þ þ k cosH



þ c

k
2
sin2 H

�!
dt; ð25Þ

where H 2 Y with

Y ¼ H : H 2 C2ð0; 1Þ; Hð0Þ
�

¼ Hð1Þ ¼ 0
�
: ð26Þ

Then on the solution of (23) the necessary condition for the minimum of I is satisfied, i.e.,

dI h;wð Þ ¼ 0; ð27Þ
where w ¼ H � h.

From system (16) and (18) we can obtain an important relation that we shall use later. Namely, by
substituting in (18, line 1) the variables X3;X2 and X4 from (18, line 2), (18, line 3) and (16) respectively, we
obtain

_FF 1

� �2
¼ k
�

þ F 1

�
k
�n

� F 1

�
C
�

� 2F 1 � c F 1

� �2�� m2 k
�

þ F 1

�o
: ð28Þ

The boundary conditions corresponding to (28) are given by (20). We shall be concerned with the solutions
of (28) that are symmetric with respect to the middle point t ¼ 1=2. In this case we have _FF 1 1=2ð Þ ¼ 0. Note
also that (28) is a generalization of the result presented in Iljohin (1979) where the classical Bernoulli–
Euler rod is treated. Our first integral reduces to the one presented in Iljohin (1979) when we set c ¼ 0 in
(28).

3. Bifurcation analysis

The bifurcation analysis will be based on the second order nonlinear boundary value problem (23) and
(24). First, we write (23) and (24) in a compact form. Thus, we define a nonlinear operator F H;m2ð Þ
mapping Y � Rþ ! Z; where Y is given by (26) and Z ¼ Cð0; 1Þ is the space of continuous functions. Note
that we shall treat k and c as fixed and given in advance while m2 will be considered as a bifurcation pa-
rameter. With

F H;m2
� �

¼ €HH þ m2 sinH

1þ cosHð Þ2
þ k sinH 1ð � ck cosHÞ; ð29Þ

system (23) and (24) becomes

F h;m2
� �

¼ 0: ð30Þ

Note that h0 ¼ 0 satisfies (30) for all values of m2 > 0. The first Fr�eechet derivative of F H;m2ð Þ calculated
on h0 ¼ 0 reads

Dð1ÞF h0

�
¼ 0;m2

�
w ¼ B m2

� �
w ¼ €ww þ w

m2

4



þ k 1ð � ckÞ

�
: ð31Þ
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The lowest eigenvalue m1 and corresponding eigenfunction w1 of the equation B m2ð Þw ¼ 0 are

m2
1

4
þ k 1ð � ckÞ ¼ p2; w1 tð Þ ¼ D sin pt; ð32Þ

where D is an arbitrary constant. Without loss of generality we take D ¼ 1. Our next goal is to show that
0� m2

1

� �
2 Y � Rþ is a bifurcation point of F h;m2ð Þ ¼ 0. Note that B m2ð Þ is a self-adjoint linear operator

B m2ð Þ ¼ B� m2ð Þ. Therefore the eigenvector of B� m2ð Þ corresponding to m2
1 is

q1 tð Þ ¼ Q sin pt; ð33Þ
where Q is an arbitrary constant that we shall, again, take as Q ¼ 1. From (29) we conclude that

F h;m2
� �

¼ �F
�
� h;m2

�
: ð34Þ

For m2
1 � Dm2

1 6m2
6m2

1 þ Dm2
1 with Dm2

1

�� �� small, we assume the solution to (30) in the form

h ¼ a sin pt þ u� a;Dm2
1; t

� �
: ð35Þ

Eq. (34) implies that u� a;Dm2
1; t

� �
is at least of the order O a3ð Þ (see Golubitsky and Schaeffer, 1985; p. 300).

The parameter a (the amplitude in the terminology of Troger and Steindl (1991)) is determined from the
bifurcation equation

f a;Dm2
1

� �
¼
Z 1

0

F a sin pt
��

þ u� a;Dm2
1; t

� �
;m2

1 þ Dm2
1

��
q1 tð Þdt: ð36Þ

Eq. (36) can be written as

f a;Dm2
1

� �
¼ c1aDm2

1 þ c3a3 þ c5a5 þ c7a7 þ h:o:t:; ð37Þ

where h.o.t. denotes terms of the order O a9; Dm2
1

� �
a3

� �
and

c1 ¼
1

4

Z 1

0

w2
1 tð Þdt ¼ 1

8
;

c3 ¼ � k
6

Z 1

0

w4
1 tð Þdt ¼ � k

16
;

c5 ¼
Z 1

0



� k
12

w3
1 tð ÞUaaa tð Þ þ l

240
w6

1 tð Þ
�
dt;

c7 ¼
Z 1

0

�
� k

1

72
w2

1 tð ÞU 2
aaa tð Þ



þ 1

240
w3

1 tð ÞUaaaaa tð Þ
�
þ l
288

w5
1 tð ÞUaaa tð Þ þ r

5040
w8

1 tð Þ
�
dt:

ð38Þ

In (38) we used k, l and r to denote the following constants

k ¼ 3k � 6ck2 � 2p2;

l ¼ �15k � 15ck2 þ 17p2;

r ¼ �63k þ 126ck2 þ 62p2

ð39Þ

and the functions Uaaa tð Þ and Uaaaaa tð Þ are solutions of the linear system of differential equations (see
Golubitsky and Schaeffer, 1985; p. 33)

B m2
1

� �
Uaaa þ EDð3ÞF w1;w1;w1ð Þ ¼ 0;

B m2
1

� �
Uaaaaa þ 10EDð3ÞF w1;w1;Uaaað Þ þ EDð5ÞF w1;w1;w1;w1;w1ð Þ ¼ 0:

ð40Þ

In (40) we used Dð3ÞF and Dð5ÞF to denote the third and fifth Fr�eechet derivative of F H;m2ð Þ with
respect to H, calculated at the point h0 ¼ 0;m2

1

� �
. Those derivatives are calculated in the directions
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w1;w1;w1ð Þ; w1;w1;Uaaað Þ and w1;w1;w1;w1;w1ð Þ; respectively. Also in (40) we used E to denote the pro-
jection operator mapping Z onto the range of B m2

1

� �
. With F and B given by (29) and (31) we obtain

€UUaaa þ p2Uaaa ¼ � k
4
sin 3pt;

€UUaaaaa þ p2Uaaaaa ¼
5

32

k2

p2

�
þ l
�
sin 3pt � 1

64

5k2

p2

�
þ 2l

�
sin 5pt:

ð41Þ

Note that (see Golubitsky and Schaeffer, 1985; p. 32)

Uaaa ¼ o3u� a;Dm2
1; t

� �
=oa3

� �
a¼Dm2

1
¼0
;

Uaaaaa ¼ o5u� a;Dm2
1; t

� �
=oa5

� �
a¼Dm2

1
¼0
:

ð42Þ

Keeping in mind that u� does not belong to the null space of B m2
1

� �
the solutions to (41) are

Uaaa ¼
k

32p2
sin 3pt;

Uaaaaa ¼ � 5

256p2

k2

p2

�
þ l
�
sin 3pt þ 1

1536p2

5k2

p2

�
þ 2l

�
sin 5pt:

ð43Þ

In writing (41, line 2) we used the solution of (41, line 1) given by (43, line 1). By using (43) in (38, lines 3
and 4) we find

c5 ¼
k2 þ 4lp2

3072p2
; c7 ¼

4rp4 � k3 � 2klp2

73728p4
: ð44Þ

For the qualitative study of solutions, Eq. (37) may be simplified by neglecting h:o:t. First note that c1 > 0
for all values of the parameters. Then, we distinguish the following special cases:

1. Suppose that k 6¼ 0. Then, from (38, line 2), we have c3 6¼ 0 and (37) is contact equivalent (see Keyfitz,
1986) to

aDm2
1 � sgn kð Þa3 ¼ 0: ð45Þ

From (39, line 1) we conclude that k as a function of k has two zeros, that separate sub- from super-
critical bifurcations (see Atanackovic and Glavardanov, 1996).

2. Suppose that, k ¼ 0 and l 6¼ 0. Then, c3 ¼ 0; and c5 6¼ 0; so that (37) is contact equivalent to

aDm2
1 þ sgn lð Þa5 ¼ 0: ð46Þ

Again the bifurcation can be both sub- and super-critical. There exist a single point k� where l as a
function of k vanishes (remember that k ¼ 0)

k� ¼ 44

45
p2: ð47Þ

This point separates the sub- from super-critical bifurcation. For k < k� we have the sub-critical bi-
furcation while for k > k� the bifurcation is super-critical.

3. Suppose that k ¼ l ¼ 0. Thus, c3 ¼ c5 ¼ 0 and

c7 ¼
5

4608
p2: ð48Þ

Therefore (37) is contact equivalent to

aDm2
1 þ a7 ¼ 0; ð49Þ

i.e., the bifurcation is sub-critical.

T.M. Atanackovic, V.B. Glavardanov / International Journal of Solids and Structures 39 (2002) 2987–2999 2995



Next we examine the stability of the trivial configuration for m2 > m2
1. We shall use the functional (25).

Consider the trivial branch a ¼ 0 in Fig. 3. The second variation of I calculated on the trivial solution
h0 ¼ 0 reads

d2I Hð ¼ 0;w;wÞ ¼
Z 1

0

_ww2
h

� m2w2 � k 1ð � ckÞw2
i
dt: ð50Þ

Note that the variation w satisfies wð0Þ ¼ wð1Þ ¼ 0: Suppose that m2 ¼ m2
1 þ Dm2

1. Then, we haveZ 1

0

_ww2
1

h
� m2

1w
2
1 � k 1ð � ckÞw2

1

i
dt ¼ 0: ð51Þ

We calculate the second variation Eq. (50) in the direction w1 and for m2 ¼ m2
1 þ Dm2

1. The result is

d2I h0ð ¼ 0;w1;w1Þ ¼ �Dm2
1

Z 1

0

w2
1 tð Þdt < 0; ð52Þ

where we used Eq. (51). The inequality (52) shows that on the branch ‘1’ in Fig. 3 the functional I is not in
minimum since it does not satisfy the necessary condition for the minimum d2I H ¼ 0;w;wð Þ > 0 for all w.
Therefore, according to the energy stability criteria for m2 > m2

1 the trivial branch is not stable.
Note that the integrand in functional (25) does not depend on t. Therefore, there is Jacobi type first

integral of the Euler–Lagrange equations (23) that reads (see Vujanovic and Jones, 1989)

_hh2

2
þ m2

1þ cos hð Þ � k cos h



þ c

k
2
sin2 h

�
¼ const: ð53Þ

The integral (53) could be obtained from (28) by using the relation (21).

4. Solution of Eq. (28)

With G ¼ F 1; F 1 1=2ð Þ ¼ G1 and by using _FF 1 1=2ð Þ ¼ 0; to determine C, we obtain from (28)

C ¼ cG2
1 þ 2G1 þ

m2 k þ G1ð Þ
k � G1

: ð54Þ

Since �k and G1 are zeros of the right hand side of (28) it follows that (28) may be written as

_GG2 ¼ kð þ GÞ Gð � G1Þ cG2

�
þ 2ð þ cG1 � ckÞG� k 2

�
þ cG1 þ

2m2

k � G1

��
: ð55Þ

Fig. 3. Bifurcation pattern.
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From (55) we obtain

_GG2 ¼ c kð þ GÞ Gð � G1Þ Gð � bÞ Gð � cÞ; ð56Þ

where

b ¼
� 2þ cG1 � ckð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cG1 þ ckð Þ2 þ 8ck m2

k�G1

q
2c

;

c ¼
� 2þ cG1 � ckð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cG1 þ ckð Þ2 þ 8ck m2

k�G1

q
2c

:

ð57Þ

Note that t ¼ 0 corresponds to G ¼ �k and t ¼ 1=2 corresponds to G ¼ G1. Therefore if there is a solution
to (56) we must have c k þ Gð Þ G� G1ð Þ G � bð Þ G� cð Þ > 0 when G 2 ð�k;G1Þ. In what follows we assume
that the parameters in (56) and (57) are chosen so that this condition holds.

We note that for the case of a rod without axis compressibility and with neglected influence of shear
stresses, i.e., c ¼ 0 the polynomial on the right hand side of (28) is of the third order. The integration
procedure in this case may follow the method used for Lagrange top (see Whittaker, 1965).

By separating variables in (56) we obtain

1

2
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c k þ cð Þ G1 � bð Þ
p F

p
2
; q

� �
; ð58Þ

where F ð/; qÞ ¼
R /
0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2 sin2 x

q�
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððk þ G1Þðc � bÞÞ=ððk þ cÞðG1 � bÞÞ

p
. Note that when

h ! 0 we have

m2

4
þ k 1ð � ckÞ ¼ p2 ð59Þ

in agreement with (32). Thus the solution (58) confirms the bifurcation analysis presented in previous
section.

Eq. (58) can be used to calculate G1 if m; k and c are prescribed. We shall compare the so determined G1

with the value obtained from numerical integration of the system (10) and (11).

5. Numerical results

In this section we present numerical solutions of the system (10) and (11) for specific values of pa-
rameters k, m, a, A22=A11 and b. Note that, in engineering terms, A22=A11 represents the ratio between
bending (A22) and torsional (A11) stiffness. As stated earlier (see the comment after Eq. (11)) the system (10)
and (11) has rotational symmetry so that, without loss of generality, we shall choose a solution that satisfies
M3ð0Þ ¼ 0. Once the solution to (10) and (11) is obtained we compare F 1ð1=2Þ with G1 determined from
(58) with given k, m and c ¼ a � b.

In Fig. 4(a) and (b) we show the projections of the rod axis on the x10 � x20 and x10 � x30 coordinate
planes, respectively. The shape is determined for k ¼ 9;A22=A11 ¼ 1:3 and m ¼ 2 and for four different
choices of a and b. The curve 1 corresponds to the Bernoulli–Euler rod, i.e., ða ¼ 0; b ¼ 0Þ; the curve 2
corresponds to ða ¼ 0:00111; b ¼ 0Þ; the curve 3 corresponds to ða ¼ 0; b ¼ 0:00288Þ and finally the curve 4
corresponds to ða ¼ 0:00111; b ¼ 0:00288Þ.

In Table 1 we present the values of F 1ð1=2Þ;M2ð0Þ and the constant C in the first integral (18, line 3) for
different values of a and b.
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Note that, because of the global equilibrium, we have F2ð0Þ ¼ F3ð0Þ ¼ 0 so that the only unknown de-
pendent variable at t ¼ 0 is M2ð0Þ. In the process of numerical integration of the system (10) and (11) we
calculated the first integrals (14) at each step of integration. They were constant up to terms of the order
10�8.

6. Conclusion

In this paper we treated the problem of determining the stability boundary and post-critical behavior of
an elastic rod loaded by a force and a couple at its ends. Our main results may be stated as:

1. By a suitable transformation of dependent variables, we reduced the initial system of equilibrium
equations (18 of them) to a single second order nonlinear differential Eq. (23). The linearization of this
equation has a null space of dimension 1. In previous works (see B�eeda et al., 1992; Atanackovic and
Glavardanov, 1996) the equilibrium equations were reduced to two second order differential equations that
lead to null space of dimension 2.

The bifurcation analysis was applied to Eq. (23). We concluded that there is the possibility of both super-
and sub-critical bifurcation. Thus, we confirmed and extended our previous results presented in Ata-
nackovic and Glavardanov (1996). Namely, here by calculating the higher order terms in the bifurcation
equation, we determined the type of bifurcation for all values of the parameters m; k; a and b.

Fig. 4. Post-critical shape of the rod.

Table 1

The values at the boundary and the value of the constant in the first integral for different values of parameters

a b F 1ð1=2Þ M2ð0Þ C

0 0 �8.32746 1.22488 �16.49966

0.00111 0 �8.78083 0.69520 �17.42669

0 0.00288 �7.32887 1.95715 �14.40354

0.00111 0.00288 �7.68626 1.72666 �15.16263
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2. For Eq. (23) we formulated a variational principle (27). We used this principle to show that the trivial
branch becomes unstable (the energy type of functional (25) is not a minimum) when the bifurcation pa-
rameter passes the critical value.

3. The first integral (18, line 3) was transformed into the form (28). This integral could also be obtained
as a Jacobi-type first integral (see Vujanovic and Jones, 1989) of the variational principle (27). By using (28)
we were able to express F 1 tð Þ in terms of elliptic integrals (see (58)). The value F 1 1=2ð Þ calculated from
elliptic integrals representation was used to check the numerical integration.

4. Finally, we solved the system (10) and (11) numerically. The results, i.e., the post-critical shape of the
rod are shown in Fig. 4 for several values of parameters m, k, a, A22=A11 and b. From this figure we conclude
that for fixed m, k and A22=A11 the maximal deflection increases with increasing b and decreases with in-
creasing a.
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