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Teodor M. Atanackovic *, Valentin B. Glavardanov

Faculty of Technical Sciences, University of Novi Sad, POB 21121, Novi Sad, Yugoslavia
Received 17 April 2001; received in revised form 1 March 2002

Abstract

We consider the problem of determining the stability boundary for an elastic rod under thrust and torsion. The
constitutive equations of the rod are such that both shear of the cross-section and compressibility of the rod axis are
considered. The stability boundary is determined from the bifurcation points of a single nonlinear second order dif-
ferential equation that is obtained by using the first integrals of the equilibrium equations. The type of bifurcation is
determined for parameter values. It is shown that the bifurcating branch is the branch with minimal energy. Finally, by
using the first integral, the solution for one specific dependent variable is expressed in terms of elliptic integrals. The
solution pertaining to the complete set of equilibrium equations is obtained by numerical integration. © 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The problem of determining the stability boundary of a twisted and axially compressed rod is indeed an
old one. Suppose that the rod is loaded by a compressive force of intensity P and a torsional couple of
intensity M,. For the case of a rod described by Bernoulli-Euler rod theory, the critical value of the load
parameters (P, My,;) was determined by Greenhill in 1883 (see Timoshenko and Gere, 1961). Later the
problem was treated by many authors. We mention the works of Biezeno and Grammel (1953), Beck
(1955), Kovari (1969), Antman and Kenny (1981), Coleman et al. (1992), Atanackovic and Glavardanov
(1996), van der Heijden et al. (1998) and van der Heijden and Thompson (2000). Besides the value of critical
load parameters (P.;, M) another important result concerns the type of bifurcation at the critical point. It
is known that in the case of the Bernoulli-Euler model the rod loaded with a compressive force only ex-
hibits a super-critical bifurcation while the rod loaded by torque only exhibits a subcritical bifurcation. In
our previous work Atanackovic and Glavardanov (1996) we determined, analytically, the value of load
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parameters (P%, M) separating sub from the super critical bifurcation. Also in Atanackovic and Gla-
vardanov (1996) the values (P, M\;) are determined for a rod described by Haringx’s type of constitutive
equation.

Our intention in this work is to reconsider the problem of stability and bifurcation of a rod, described by
Haringx’s type of constitutive equation and loaded by a force and a couple. We shall use the Euler (static)
method of adjacent equilibrium configuration to analyze stability. First we shall reduce the system of
nonlinear equilibrium, geometrical and constitutive equations (altogether 18 equations) to a single non-
linear second order equation. We determine the critical load parameters as well as type of bifurcation from
the bifurcation points of this equation. This is a significant reduction, since in Béda et al. (1992) and
Atanackovic and Glavardanov (1996) the bifurcation analysis was performed on two second order non-
linear differential equations. Also the reduced system, when linearized, has a null space of dimension one.
Thus, we obtain single bifurcation equation for the reduced system. In earlier approaches (see Béda et al.,
1992; Atanackovic and Glavardanov, 1996) the null space of dimension two led to two bifurcation
equations, one of which was eliminated using symmetry considerations.

Another characteristic of our approach is that the second order equation that we deal with is the
Euler-Lagrange equation of an energy type functional and possesses a first integral. We shall use this
first integral to express the solution in terms of elliptic integrals. Thus, our results represent a generaliza-
tion of the results of Iljohin (1979) p. 38 for Bernoulli-Euler rod. On the other hand our results may
be viewed as a specialization of the results of Antman and Kenny (1981) to a specific constitutive equa-
tion. Due to this specialization we were able to obtain more information about the solution than presented
in Antman and Kenny (1981). Namely, we obtained a first integral and representation of the solution
in terms of elliptic integrals and we obtained the type of bifurcation for all values of load and material
parameters.

2. Formulation

Consider an elastic rod 0,0, shown in Fig. 1. The rod is naturally straight and loaded by a concentrated
compressive force and a couple at its end O,. The compressive force P = —Pe| is of constant intensity
P = const. and oriented along the x;, axis of a fixed rectangular Cartesian coordinate system X9, X9 and X3
with unit vectors ejq, € and es, respectively. The couple is given as T = M;e,, with M; = const. The end O,
of the rod is fixed to a unmovable rigid plate, lying in the X,; — X390 coordinate plane so that the cross-section
of the rod that is in contact with the rigid plate does not have any rotation or translation (welded end). For
interpretation of this boundary condition as well as for the review of other possibilities of specifying
boundary condition for shearable rods (see Antman and Christoforis, 1997). At the end O, the rod is
welded to a movable rigid plate that can move freely but must remain parallel to the coordinate plane
X0 = 0.

Let S be the arc-length of the rod axis in the undeformed state: S € [0, L] where L is the length of the rod.
We specify the configuration of the rod by one vector function r(S) specifying the position of a point on the
rod axis and by orientation of the Cartesian coordinate system with axes X;, X,, X3 oriented along the normal
to the cross-section and along the principal directions of the rod cross-section at an arbitrary point O of the
rod axis, respectively. Thus we have

r(S) = xj0€10 + x20€20 + x30€30. (1)

Let e, e;, e; be the unit vectors along the X, x,, X3 respectively. The orientation of the system ey, e;, e3 with
respect to the unit vectors parallel with ey, ey, e3p and passing through point O is given by three Euler type
of angles. We use a set of the 1-3-2 Euler angles (also called ship angles, see Lurie, 1961) that transform e,
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Fig. 2. Euler type of angles defining local coordinate system.

ey, €39 to ey, e, e3 by the sequence of three rotations. The first is rotation of amount 6, about the x;, axis.
The next rotation is about & axis for an amount 05 (see Fig. 2). The last rotation is of amount 0, about the
X, axis. All rotations are performed counterclockwise.

The vector @ (the angular velocity vector) is

w = 0/1610 + 0,3‘” + 9/262, (2)
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where (-)" = d/dS() and u is the unit vector along the ¢ axis. From (2) we obtain the components of @ in

the local coordinate system ey, e;, e;. Thus, o = w;e; + w,e; + w;e; with

w; = 0} cos 0 cos O3 — 0, sin 0,,
wy = 05 — 0, sin 65, (3)

w3 = 0 cos 05 sin 0, + 6, cos 0,.
Let I" be a vector defined by
I'=r —e. (4)

In the local coordinate system ey, e,, e; the vector I' may be expressed as
F:F101+F202+F303. (5)

Then the six quantities (w;, s, ;) and (I'y, 5, I'») are the strains for the rod theory that we use (see
Antman, 1995; Atanackovic, 1997).
The equilibrium equations for the rod can be written as

F=0 M=-rxF, (6)

where F = Fie; + F>e, + Fses is the contact force, M = M e, + M,e, + M;e; is the contact couple and we
assumed that there are no distributed forces or couples. Following Eliseyev (1988) we assume the con-
stitutive equations for the contact force and contact couple in the form

F = By I'ie; + By I2e; + Bzl '3e3

7
M = A4, 1m1€; + Apwye; + Azwses, 7
where By, By, ...,As; are constants. Note that (4) may be written as
r=I+e. (8)

In the analysis that follows we assume that the rod has axial symmetry so that 4y, = A3; and By, = Bss.
Introducing the dimensionless quantities

- RL* - BI* _ RBL? PL?
! =" F 3 ] =

(]

YT Ay T A T Ay T Ay’
— ML — ML — M;L ML
! "4227 ? "4227 ’ "4227 A22’ (9)
X :@ X :@ X :@ t:§
10 La 20 La 30 L7 L7
_An o An
B]]Lz, 322L27 y ?

and by using (7) in (3), (6) and (8) we obtain
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Fi+F3M, — F,M3 =0,

- ——  Ay— —

Fy+FMy——FM, =0,

All
= Ay — — _
F; —I—A—F2M1 —F\M,=0,
11

M, =0,

. 53 A P
gz_ﬁﬁM1+M2+£M3,
c3; Ap

0y = —SzA—M1 + ¢, M3,
An
X0 = 0263(1 + otfl) — Bs3Fy + PeysyFs,
X0 = (c1c283 + 5152) (1 + oF ) + BeresFs + B(crsass — cas1)F,
X30 = (25153 — €182) (1 4 aF'1) + BsicsFa + B(sisas3 + 1) F,

where ¢; = cos 0y, s; =sin0y,...,s3 =sinf; and we assumed that ¢; # 0. The boundary conditions cor-
responding to (10) read

Fi(l)= -4, Fa(1)=0, Fy(l)=0,
Mi(1)=m, 0,(1)=0, 05(1)=0,
91(0) =0, 92(0) =0, 93(0) =0,
X10(0) =0, X2(0) =0, X3(0)=0.

(11)

Let F\,F,,F3,...,%3 be a solution to (10) and (11). Then an arbitrary rotation about the x;o axis leads to
another solutlon ie., Fi,Frco8d + F3sind, —F>sind + F3c0s 6, ..., —Xsind + X3pcos d is a solution to
(10) and (11) for arbitrary J. Note that (10, line 4) together w1th (11, line 4) lead to

For further analysis we shall need the first six equations of the system (10), that after the use of (12) become
F\ + F3M, — FoM; = 0,

- — A _
FZ +F1M3—£mF3:O,
A

- A _ _
F3+£mF2—F1M2:O

An ’ (13)
—- A _ — —
. A _ _ _
M3+ <AZZ_ l)mM2 = —Fz[l +’))F1]
11
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It can be seen that the system (13) has the following first integrals
Flm + Fzﬁz + F3M3 = —)»m,

=2 =2 =2 (14)
Fi+F, +F, =2
We proceed now to simplify (13). Thus, we introduce the variables
X, =M+ M,
X; = FoaM, + F3Ms, (15)
X4 = F2M3 —Fgﬁ_lz.
By differentiating (14, line 1) and by using (13) we find that
Fi =X (16)

Further by differentiating (15) and by using (13) we obtain
X, = =2X;[1 +yF1],
Xy = —mX;, (17)
Xy = —XF +mXs + ((F1)' = 22) (14 9F)).
It can be seen that the system (16) and (17) has the following first integrals:
X xi= (2= (F))x
X;:—m(Fl—I—/l), (18)
X, +2F, + y(fl)z = C = const.

From system (16)—(18) we derive the following second order equation
i — -\ 2__ _ . 2 o
F(2=(F)) + (F) Fi+ w4 F) + (2= (F)) (149F) =0, (19)

The boundary conditions corresponding to (19) follow from (11, line 1) and the condition of global
equilibrium of forces in the xj, direction. Thus, they read

Fi(0) = -4, Fi(1) = —A (20)

Following Antman and Kenny (1981), we introduce the angle 6 (the Euler angle of nutation) between e,
and ejy. Then,

F, = —Acos0. (21)
With (21), Eq. (19) becomes

.. sin 0
m2

3sin® 00+ m*——— + Asin0(1 — yAcos6) | = 0. 22
(1 + cos 0)’ (1 =74cosf) (22)

We are going to use (22) for the local bifurcation analysis. Thus, we are interested in solutions 0(¢) of (22)
that are C%(0,1) functions, small in L., norm. Therefore, as shown by Antman and Kenny (1981), we assume
that |0|] < =n. Then, from (22) we obtain

sin 0

0 + m® 5+ 2sin0(1 — yAcos 0) = 0. (23)

(1 +cos0)



T. M. Atanackovic, V.B. Glavardanov | International Journal of Solids and Structures 39 (2002) 2987-2999 2993

The boundary conditions corresponding to (23) follow from (20) and (21) so that
0(0)=0, 0(1)=0. (24)

The system (23) and (24) will be the basis for our bifurcation analysis. Note that (23) and (24) are Euler—
Langrange equations of the variational principle that we formulate next. Consider the problem of deter-
mining the minimum of the functional

1 @2 mZ )», .2
I—/O (7—m+2 COS@+/§SIH @:| dz, (25)

where @ € Y with
Y= {@:@eCZ(O,l), @(0):@(1):0}. (26)

Then on the solution of (23) the necessary condition for the minimum of 7 is satisfied, i.e.,
81(0,w) =0, (27)

where w = @ — 0.

From system (16) and (18) we can obtain an important relation that we shall use later. Namely, by
substituting in (18, line 1) the variables X3, X, and X, from (18, line 2), (18, line 3) and (16) respectively, we
obtain

(7)) = G+ F){(-F) (¢ 2F 3 (F)) —m (24 F) L (28)

The boundary conditions corresponding to (28) are given by (20). We shall be concerned with the solutions
of (28) that are symmetric with respect to the middle point # = 1/2. In this case we have F(1/2) = 0. Note
also that (28) is a generalization of the result presented in Iljohin (1979) where the classical Bernoulli—
Euler rod is treated. Our first integral reduces to the one presented in Iljohin (1979) when we set y = 0 in
(28).

3. Bifurcation analysis

The bifurcation analysis will be based on the second order nonlinear boundary value problem (23) and
(24). First, we write (23) and (24) in a compact form. Thus, we define a nonlinear operator .7 (6, m?)
mapping ¥ X R, — Z, where Y is given by (26) and Z = C(0, 1) is the space of continuous functions. Note
that we shall treat 4 and y as fixed and given in advance while m? will be considered as a bifurcation pa-
rameter. With

. in @ .
7 (0,m?) :@erz(ljmi@)z+ism@(l—yicos@), (29)
cos
system (23) and (24) becomes
Z(0,m*) = 0. (30)

Note that 6, = 0 satisfies (30) for all values of m> > 0. The first Fréchet derivative of # (0, m?*) calculated
on 0y = 0 reads

2
DYF (6 = 0,m*)w = B(m*)w =W + w[% + A(1 - y),)} : (31)
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The lowest eigenvalue m; and corresponding eigenfunction w; of the equation B(m?)w = 0 are

2
% +i1—9p) =%  w()=Dsinn, (32)

where D is an arbitrary constant. Without loss of generality we take D = 1. Our next goal is to show that
(0 x m}) € Y x R.. is a bifurcation point of # (0, m*) = 0. Note that B(m?) is a self-adjoint linear operator
B(m?) = B*(m?). Therefore the eigenvector of B*(m?) corresponding to m? is

q1(t) = Osinmt, (33)
where Q is an arbitrary constant that we shall, again, take as O = 1. From (29) we conclude that
?(G,mz) =-7 (- H,mz). (34)

For m} — Am} <m? <m? + Am} with |Am?| small, we assume the solution to (30) in the form
0 = asinnt +u (a, Amj, 1). (35)

Eq. (34) implies that u* (a, Am?, t) is at least of the order O(a?) (see Golubitsky and Schaeffer, 1985; p. 300).
The parameter a (the amplitude in the terminology of Troger and Steindl (1991)) is determined from the
bifurcation equation

1
fla,Am7) = /0 (7 (asinnt +u (a, Amj, 1), m} + Am})] g, (¢) dt. (36)

Eq. (36) can be written as
f(a, Am%) = claAmf +c3a® + ¢sa’ + cra’ + heoot., (37)

where h.o.1. denotes terms of the order O(a’, (Am})a?) and

e = /01 {— %Wf(t)Um(t) +ﬁw?(’>] dr, (38)

1
N A ) L 1 ro
¢ = /0 { k{nw](t)Uaaa(t)+24Ow](t)Uaaaaa(t)} + 355 M1 (0 Uiaa() 5575w (0) p di.

In (38) we used k, / and r to denote the following constants
k=3)—6y)% —27°,
[ =—15)— 15y + 177, (39)
r=—634+ 126y4* + 627°

and the functions U,,,(¢) and U,u.(f) are solutions of the linear system of differential equations (see
Golubitsky and Schaeffer, 1985; p. 33)

B(m})Usus + EDDF (wy, w1, wi) = 0,
B(m3) Usgaga + 10EDD F (Wi, w1, Uaa) + EDOF (wy, wi, wi, wi, wy) = 0.

In (40) we used D®.Z and D®.Z to denote the third and fifth Fréchet derivative of Z (@, m?) with
respect to @, calculated at the point (90 = O,m%). Those derivatives are calculated in the directions

(40)
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(w1, wi,wy), (w1, wi, Use) and (wy, wy, wi, wi, wy), respectively. Also in (40) we used E to denote the pro-
jection operator mapping Z onto the range of B(mf) With % and B given by (29) and (31) we obtain

k .
Usa + 1 Upe = — 1 sin 37z,

41)
.. 5 (kK 1 [ 5k (
2 _ . .
Uaaaaa +7 Uaaaaa - ﬁ{gﬁ‘ 1} 51n37U _a{?+2l} SIHSTCt.
Note that (see Golubitsky and Schaeffer, 1985; p. 32)
_ [A3,,* 2 3
Ua = [6 u (a,Aml,t)/aa ]a:Amfzo’ )
Usaaaa = [0 (a, Am7, t)/@as]a:Am%ZO.
Keeping in mind that »* does not belong to the null space of B(mf) the solutions to (41) are
k.
Upsa = e sin 37tt,

5 [k 1
Vaaaaa 256n2{n2+l} sm3nt+1536n2{ ot 1} sin St

In writing (41, line 2) we used the solution of (41, line 1) given by (43, line 1). By using (43) in (38, lines 3
and 4) we find

B k* + 41n? B drm* — K — 2kin? (44)
ST 302 0 7T e
For the qualitative study of solutions, Eq. (37) may be simplified by neglecting 4.0.t. First note that ¢; > 0
for all values of the parameters. Then, we distinguish the following special cases:

1. Suppose that k& # 0. Then, from (38, line 2), we have ¢3 # 0 and (37) is contact equivalent (see Keyfitz,
1986) to

alAm; — sgn(k)a’® = 0. (45)
From (39, line 1) we conclude that k as a function of /1 has two zeros, that separate sub- from super-

critical bifurcations (see Atanackovic and Glavardanov, 1996).
2. Suppose that, £ = 0 and [ # 0. Then, ¢; = 0, and ¢s # 0, so that (37) is contact equivalent to

aAm? + sgn(l)a® = 0. (46)
Again the bifurcation can be both sub- and super-critical. There exist a single point A" where / as a
function of 1 vanishes (remember that k£ = 0)

44
= Isﬁ .
This point separates the sub- from super-critical bifurcation. For 1 < A* we have the sub-critical bi-

furcation while for 4 > 1" the bifurcation is super-critical.
3. Suppose that k = [ =0. Thus, ¢; = ¢s =0 and

P (47)

5 2
=——7". 48
77 4608 " (48)
Therefore (37) is contact equivalent to
aAmi +a’ =0, (49)

1.e., the bifurcation is sub-critical.
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Fig. 3. Bifurcation pattern.

Next we examine the stability of the trivial configuration for m? > m}. We shall use the functional (25).
Consider the trivial branch a = 0 in Fig. 3. The second variation of I calculated on the trivial solution
0y = 0 reads

10 = 0,w,w) = /0 1 [WZ —mPw? — (1 — yi)wz} dr. (50)
Note that the variation w satisfies w(0) = w(1) = 0. Suppose that m> = m? + Am?. Then, we have
/01 {w% —mwt — A(1 — y}t)wﬂ dr=0. (51)
We calculate the second variation Eq. (50) in the direction wy and for m* = m? + Am?. The result is
(0 = 0,1, w1) = —Am? /0 W2 <0, (52)

where we used Eq. (51). The inequality (52) shows that on the branch ‘1’ in Fig. 3 the functional [ is not in
minimum since it does not satisfy the necessary condition for the minimum &*/(@ = 0, w,w) > 0 for all w.
Therefore, according to the energy stability criteria for m* > m? the trivial branch is not stable.

Note that the integrand in functional (25) does not depend on ¢. Therefore, there is Jacobi type first
integral of the Euler—Lagrange equations (23) that reads (see Vujanovic and Jones, 1989)

6’ m?
2 + (1 +cos0)
The integral (53) could be obtained from (28) by using the relation (21).

-2 {cos 0+ "/% sin’ 9] = const. (53)

4. Solution of Eq. (28)

With G = F, F;(1/2) = G, and by using F,(1/2) = 0, to determine C, we obtain from (28)
mZ(A + Gl)

=Gy
Since —4 and G, are zeros of the right hand side of (28) it follows that (28) may be written as

C =9G; +2G, +

. X 2m?
G =(+G) (G- Gl){yG2+ (247G, —yA)G—/1<2—|—yG1 +i_’"Gl)}. (55)
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From (55) we obtain
G =91+ G)(G—G)(G—b)(G—c), (56)

where

—(2 479G, —yA) — \/(2 +9G1 +72)" + 89455
2y ’

—(2+ 796 = 12) + /2 +7G1 +72) + 8252
2y ‘

CcC =

Note that # = 0 corresponds to G = —4 and ¢ = 1/2 corresponds to G = G;. Therefore if there is a solution
to (56) we must have (1 + G)(G — G1)(G — b) (G —¢) > 0 when G € (—4, G}). In what follows we assume
that the parameters in (56) and (57) are chosen so that this condition holds.

We note that for the case of a rod without axis compressibility and with neglected influence of shear
stresses, i.e., y = 0 the polynomial on the right hand side of (28) is of the third order. The integration
procedure in this case may follow the method used for Lagrange top (see Whittaker, 1965).

By separating variables in (56) we obtain

1 2 T
27 G+ oG —b)F(E"’)’ G8)

where F(¢,q) :fod)dx/\/l —¢*sin’x and ¢ = /(2 + G)(c — b))/((2+¢)(G\ — b)). Note that when

0 — 0 we have

m2
T + (1 =91) = (59)
in agreement with (32). Thus the solution (58) confirms the bifurcation analysis presented in previous
section.

Eq. (58) can be used to calculate G, if m, A and y are prescribed. We shall compare the so determined G,
with the value obtained from numerical integration of the system (10) and (11).

5. Numerical results

In this section we present numerical solutions of the system (10) and (11) for specific values of pa-
rameters A, m, o, A» /A1 and . Note that, in engineering terms, A /A4, represents the ratio between
bending (4,,) and torsional (4;;) stiffness. As stated earlier (see the comment after Eq. (11)) the system (10)
and (11) has rotational symmetry so that, without loss of generality, we shall choose a solution that satisfies
M3(0) = 0. Once the solution to (10) and (11) is obtained we compare F(1/2) with G; determined from
(58) with given A, m and y = o — f.

In Fig. 4(a) and (b) we show the projections of the rod axis on the Xy — Xy and X9 — X3y coordinate
planes, respectively. The shape is determined for 1 =9,45/4,; = 1.3 and m = 2 and for four different
choices of o and f. The curve 1 corresponds to the Bernoulli-Euler rod, i.e., (« =0, = 0), the curve 2
corresponds to (« = 0.00111, § = 0), the curve 3 corresponds to (« = 0, f = 0.00288) and finally the curve 4
corresponds to (a = 0.00111, f = 0.00288).

In Table 1 we present the values of F(1/2),M,(0) and the constant C in the first integral (18, line 3) for
different values of o and f.
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Fig. 4. Post-critical shape of the rod.
Table 1
The values at the boundary and the value of the constant in the first integral for different values of parameters
o B F(1/2) M,(0) C
0 0 —8.32746 1.22488 —16.49966
0.00111 0 —8.78083 0.69520 —17.42669
0 0.00288 —7.32887 1.95715 —14.40354
0.00111 0.00288 —7.68626 1.72666 —15.16263

Note that, because of the global equilibrium, we have F>(0) = F3(0) = 0 so that the only unknown de-
pendent variable at ¢ = 0 is M,(0). In the process of numerical integration of the system (10) and (11) we
calculated the first integrals (14) at each step of integration. They were constant up to terms of the order
1078,

6. Conclusion

In this paper we treated the problem of determining the stability boundary and post-critical behavior of
an elastic rod loaded by a force and a couple at its ends. Our main results may be stated as:

1. By a suitable transformation of dependent variables, we reduced the initial system of equilibrium
equations (18 of them) to a single second order nonlinear differential Eq. (23). The linearization of this
equation has a null space of dimension 1. In previous works (see Béda et al., 1992; Atanackovic and
Glavardanov, 1996) the equilibrium equations were reduced to two second order differential equations that
lead to null space of dimension 2.

The bifurcation analysis was applied to Eq. (23). We concluded that there is the possibility of both super-
and sub-critical bifurcation. Thus, we confirmed and extended our previous results presented in Ata-
nackovic and Glavardanov (1996). Namely, here by calculating the higher order terms in the bifurcation
equation, we determined the type of bifurcation for all values of the parameters m, A, and f.
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2. For Eq. (23) we formulated a variational principle (27). We used this principle to show that the trivial
branch becomes unstable (the energy type of functional (25) is not a minimum) when the bifurcation pa-
rameter passes the critical value.

3. The first integral (18, line 3) was transformed into the form (28). This integral could also be obtained
as a Jacobi-type first integral (see Vujanovic and Jones, 1989) of the variational principle (27). By using (28)
we were able to express F;(¢) in terms of elliptic integrals (see (58)). The value F(1/2) calculated from
elliptic integrals representation was used to check the numerical integration.

4. Finally, we solved the system (10) and (11) numerically. The results, i.e., the post-critical shape of the
rod are shown in Fig. 4 for several values of parameters m, A, «, 45 /A41, and . From this figure we conclude
that for fixed m, 1 and A4,,/4,, the maximal deflection increases with increasing ff and decreases with in-
creasing o.
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